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TECHNICAL NOTE 3905

DIFFERENTIAL EQUATIONS OF MOTION FOR COMBINED FIAPWISE

The differential equations of motlon for the lateral and torsional
deformations of twisted rotating beams are developed for application to
helicopter rotor and propeller blades. No assumption 1s made regerding
the coincidence of the neutral, elastic, and mass axes, and the generality
is such that previous theories involving variocus simplifications are con-
tained as subcases to the theory presented in this paper.

Special attention is glven the terms which are not included in pre-
vious theories. These terms are largely coupling-type terms associated
with the centrifugal forces. Methods of solution of the equations of
motion are indlcated by selected examples.

INTRODUCTION

This paper deals with the deformation theory of rotating blades.
The structural problems of these blades have become more scute in almost
every phase of seronautical-engineering application: For example, pro-
pellers have become larger and thinner, particularly in connection with
alrcraft designed for vertical take-off and landing and short take-off
and landing, and as a consequence are more susceptible to vibration and
flutter troubles; hellcopter blades are subject to numerous vibration,
divergence, and flutter problems; and turbine and compressor blades fail
frequently because of some vibration phenomena. There is therefore much
interest in the development of a more general deformation theory which
is fundamental in the structural and dynamic analysis of these problems.

Although maeny theoriles on blade deformation exist, these theoriles
either neglect some of the factors of concern or treat them only approxi-
mately. The factors are many and include variaeble stiffness and mass
distributions, noncoincidence of the elastic and mass axes, bullt-in
twist, coupling brought about by lnertia and centrifugal forces, and so
forth. In order to give a rough perspective of the scope of availsble
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theory, figure 1 has been prepared. The nonrotating-beam cases have also

been included in figure 1l(a). The first two cases refer to uncoupled . ' .
bending and uncoupled torslon of-beams without twlst, and much work on
these cases has been done; thelr treatment is in fact classical. The
third case 1s that of coupled bending in two directions and torsion of a
twisted beam, wherein the elastic and mass axes are noncoincident (see-
ref. 1); the subcase where nc twist is present has also been given exten-
sive treatment. Addltlonal treatments on general theory of pretwisted
beams are also glven in references 2 to 4.

The rotating-beam cases which have been treated with the inclusion
of centrifugal forcee are shown in figure 1(b). The first—case, that of
pure flapwise bending of-an untwisted beam, has been considered by several
investigetors; reference 5 1s & notable example in which beams of variable
cross section and different root-end suspensions are analyzed from a
design-application. standpoint in considerable detail. References 6 to 8 N —
also glve substantlial treatments to this case. Pure torsion of untwisted
rotating beams 1s treated in references 9 snd 10, snd coawbined bending in
two directions 1s treasted by varlous means which include both vector and
matrix methods in references 11 to 16,

The case treated in the present paper 1s shown 1n figure 2; thils case
represents the coupled bending in two dlrectlons and torslon of a twisted -
rotating beam where the elastlc axls, mass axis, and tension axis are not -
necessarlly coincident. The tension axls is defined as the spanwise locus -
of the centrolds of the cross-sectional ares effective in carrying tension.
The specific purpose of the paper is to develop the differential equation
of deformation of the blade under the action of various spplied loads.

The development is made along the principles of "engineering" beam theory,
and secondary effects, such as deformation due to shear, are not—included.
The theory 1s therefore intended primsrily for blades of moderate to high
aspect ratios, for which plate bending effects are probably not significant.
Special subcases which lnvolve simplifications that appear Justified in the
treatment of certain problems (for example, hellcopter blade deformation)
are then deduced. Filnally, methods of solving the equations are dlscussed,
end exemples are given.

SYMBOLS
A cross-sgsectional ares of blade effective in carrying axial
tension oo )
B1,Bo section constants, see equations (9)
ds incremental distance measured along beam fiber in undeformed i

state
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incremental distance measured along heam fiber in deformed
state :

Young's modulus of elasticity

distance between mass and elastic axis, positive when mass
axls lies ahead of elastlc center

distance between area centroid of tensile member and elastlc
axis, positive for centroid forward

distance at root between elastic axls and axls about which
blade is rotating, positive when elastic axis lies ahead

shear modulus of elasticity

bending moments of lnertia about mejor and minor neutral
axes, respectively (both pass through centroid of
cross-sectional area effective in carrying tensions)

torsional stiffness constant

polar redius of gyration of cross-sectional area effective
in carrying tensile stresses about elastic axis

polar radius of gyration of cross-sectionsl mass about
elastic axis (k&z = kmlz + km22)

mass radil of gyration about major neutral axis and about
an axis perpendicular to chord through the elastic axis,
respectively

intensity per unit length of laterally applied aerodynamic
load in plane of rotation

Intensity per unit length of applied aerodynamic loading
perpendicular to plane of rotation

intensity per unit length of spplied serodynamic torque
loading

resultant cross-sectional moment about major principal aexis

resultant cross-sectional moment ebout axis perpendiculer to
major principal exis and passing through elastic axis

resultant moments in x-, y-, and z-directions, respectively,
of M;, My, and Q moments
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mass of beam per unit length

resultant or total loadings per unit length in xX=, y=-,
and z-directions

resultant cross-sectional torque sbout—elastic axis
torque loading per unit length

resultant—torque loedings per unit length in x-, y-,
-and z-directions

blade radius

tension in beem, T & f 0%mx dx
| y |

thickness of cross section at any chordwise position

cross-sectional shears in y- and z-directions

lateral displacements of beam, in plane of rotation and
normal to plane, respectively

coordinate system which rotates with blade such that
x-8xls falls along initial or undeformed position of
elastic axis (see figs. 2 and 3)

blaede angle of station x prior to any deformation, positive
when leading edge is upward

strain

strain due to tension, ﬁ%

cross-sectional coordinates; n-axis lies along maejor axis,
{-axis is perpendicular to major axis and passes
through elastic axis (see fig. 3)

values - of 1 for tralling edge and leading edge of cross
section

mass density
stress

angle of-twisting deformation, positive when leading edge
is upward
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Q anguler velocity of rotation
@ frequency of vibration, redians/sec

Primes denote derivatives with respect to x; dots denote derivatives
with respect to time.

ANALYSTS

General Procedure

As noted from figure 2, the beam 1s considered as though it were a
rotating helicopter blade with rotation counterclockwise when viewed
from above. The x-axis of the x,y,z coordinate axes system shown lies
outward along the blade and is colncident with the undeformed position
of the elastic axis. This set of axes moves with the blade sround the
axis of rotation at the given rotational velocity &, and all deforms-
tions of the hlade are referred to this coordinate system. The blade is
consldered under the actlon of distributed aserodynamic loadings in the
y- and z-directions and under a distributed torque loading sbout the
elastic axis, where the intensitiles per unit length are denoted by Ly,

L,, and M, respectively. The tension in the beam is denoted by T.

Figures 3(a) and (b) show the coordinste system used for the blade
cross section and the chosen displacements of this anslysis. The 7-
and {-axes, with the origin at the elastic axis and the 7n-axis along
the major axis of the cross section, move with the cross section. The
blade deformetions are denoted by a displacement v of the elastic axis
in the plane of rotatlion, positive when in the direction of rotation, a
displacement w out of the plane.of rotation, positive upward, and s
rotation ¢ about the elastic axis. The built-in twist B and also @
are positive when the blade leading edge is up.

The aim of this analysis 1s to derive the differential equation of
motion in terms of v, w, and ¢. The derivetion proceeds along the
following steps:

(1) The equation for longitudinsl strain at any point on the cross
section is derived in terms of the displacements.

(2) With the aid of thils strain equation the iInternal elastic moments
are derived; these are the resultant moments taken about the 1- and {-axes
and are shown in figure 3(e).

(3) The transformastion 1is then made of these elastic moments to the
more easily handled moments which have vectors parallel to the x,y,z axes
system. (See fig. 3(c).)
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(h) The equilibrium expressions for these latter moments are derived,
and this consideration involves the introduction of the total loading on
the beam. : -

(5) The total loadings, composed of the body forces and applied
lcadings, are derived.

(6) steps 3, 4, and 5 are combined to give the final differential
equations. -

Derivation of Strain Equation

Both longitudinal and shearing strains are, of course, produced
during bending and torsion of the beam. In general, both _types of strains
must be considered in determining the resultant forces and moments that
act on & glven cross sectlion. In the treatment—given in the present paper,
however, an approach is used which requires that—only the longitudinsl
strains have to be consldered explicitly. In appendix A a derlvation
akin to an engineering beam theory is given for the strain thet develops
in any longitudinal fiber of-a twisted beam which undergoes translational
displacements v eand w eand a torsional displecement ¢. The deriva-
tion is mainly formal, but a physical insight of how strain is developed
may be gained by consldering the possible motions of the imaginary cutting .
planes shown in figure 4 and which are assumed to remain plane during
deformation. In general, strein may arise from four types of motion:
pure displacement of the planes toward or away from each other, rotation -
of the planes associated with chordwise bending, rotation of the planes
assoclated with flepwise bending, and rotation of the planes relative to
one ancther asbout the elastic axis to cause beam twilisting. With the
assumption that the cross section is symmetrical about the msjor princi-
pal axis, the resulting longitudinal strain is found to be

€ =-€n + (eA- 'r])(v"cos B+w'sin B)+ {(v'sin B - w'cos B)+ (§2+ 12 - kAa)B'¢'

(1)

The longltudinal stresses follow directly from this equation and are
0 =E|eq + (eA - n)(v“cos B + w'sin B) + t(v'"sin B - w'cos B) +

(92 + 92 - KA2)5'¢] (2)
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No further development of .cross-sectional stresses or strains is
necessary. The consideration of shearing stresses which are associated
with longitudinal stresses, that is, the shearing stresses which are
necessary to satisfy equilibrium of an elemental tube, is avoided by
choosing the elastic axis (defined here as the locus of shear centers)
as a reference axis; the consideration of shearing stresses due to
twisting deformation is obviated through use of the assumption that the
resisting torque includes a St. Venant type torsional term which is the
same as would develop 1f the beam were Initially untwisted. Both of
these items will be introduced in the next section.

Derivation of Internal Elastic Moments

The stress distributlons over the cross section may now be resolved
into effective internsl resisting moments at the elastic-axis position,
as shown in figures 3 and 5. In order to determine these moments, the
inclination relative to the elastic axis of the general beam fiber due
to initial twist and twisting deformation must be considered. The stress
along this filber 1is resolved into two components, one parallel to the
elastic axis and one in a plane perpendicular to the elastic axis. (See
fig. 5.) From the longlitudinal component, the flapwise bending moment M1

and the chordwise bending moment Mp are given as follows:

M t/2
M, = - at a 3
1 _/;te ‘[-t/e of df dn (3)

- anle JFZ;E on df dny (L)

Tte -

Mo

where the minus signs have been introduced to maske the moments positive
when they produce compression in the upper and nose fibers, respectively.

The component in the plane normal to the elastic axis leads to an
effective torsional resisting moment. The consideration of this compo-
nent and the addition of the torque associasted with St. Venant twisting
mentioned previously leads to the following equation for total resisting
torque:

Q = GIP* + fﬂze _/::i o(p + 9)*(v2 + t2)at an (5)

Nte
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where a positive torque is assoclated with a positive ¢' In equa-
tion (5 the choice of the elastic axls as a reference axls is signifi-
cant. The elastic axis does not necessarily coincide with the centroidal
axls, and if the centroidal axls, or for that matter any other axis, were
used a8 & reference, then the shearing stresses assoclated with longi-.
tudinal stresses would contribute to the total resisting torque. Such a
term would have to bé included in equation (5) and would thus lead to
considerable complication in the analysis. With the choice of the elas-
tic axls, however, no such term appears, because the elastic axls is
defined herein as the axls about which the resultant torque of the
shearing stresses due to longltudinal stresses is Zero.

Since the elastic axis is important, the establishment of this axis
position will be discussed now. Consider differential longitudinal
stresses to arise which hsvé a cross-sectional distribution the same as
that given by equation (2). The differential longlitudinal stresses

asscciated with the expression E [eT+eA(v"cos B+ vw'sin B) -k 2[3'525']

are uniform across the cross section and hence do not produce any
shearing stresses. For the expression

E[}n(v"cos B8 + w'sein B) + (§2 + ﬁ2951¢1

the differential stresses would be symmetrical about the major axis

(n-exis) and, since the cross section is assumed symmetrical, would lead

to a resultant shear directed elong the major axis. Only the remaining
term E{(v"sin B - w'cos B) can lead to shearing stresses which produce
torque. Thus in order to locate the position of the elastic axis, it is
sufficlent to consider the beam in bending about the major axis only,

wilth a linear stress distribution in the {-direction, and then to deter-
mine the shearing stresses over the cross sectlion (in the n- and {-directions)
and the position along the major axis for which these shearing stresses pro-
duce no resultant torque. (See treatments on elastic axis and shear center
in ref. 17.)

The substitution of equation (2) into equations (3), (4), and (5)°
glves the following equations for total elastic moments in terms of the
displacements: )

My = EI;(-v"sin B + w"cos B) (6)
Mp = EIp(v'"cos B + w"sin B) - Tey - EByB'@! (7)

= [GJ + ka + EBl(-B')%lgﬁ' + TkAEB' - EB2;3'(v"cosp +w'sin B) (8)
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where -I; and I, are the principal moments of inertia of the tensile

carrying area (12 is the moment of inertia ebout the mean principal axis,
not about the g-axis) and where By &and By are section constants defined

by

M7 2 2 )

e

Bi =f tne(n2+%-kA>dn
Tte

—
\O
e

~Mie £2 o
By =/ tn(n2+E-kA>dn
e J

In equations (9) it is interesting to note that if displacements parallel
and perpendicular to the Blade chord had been used instead of v and w
the results obtalned would differ from those used by other investigestions.
(See appendix A for the results obtained.) Also of interest is the form
that equation (8) would take if large deflections in ¢ were considered,
but with v = w = O. This point, which is connected with the possibility
of a torsional instability, i1s discussed also in appendix A.

Moment Transformation

In the consideration of the equllibrium between moments, shears,
and tension, it is more convenient to deal with moments that are orlen-
tated parallel to the x-, y-, and z-axes, that is, the moments My, My,
and M, shown in figure 3. A simple transformation of the moments Mg,
Mp, and Q to these newer moments is thus desired. When the M;, Mp,
and Q moments are resolved into components in the x-, y-, and
;-directiiis, respectively, and use 1s made of the relations that when

5 Ema .

sin(f + @) = sin B + @ cos B
cos(B + @) = cos B - @ sin B (20)
the following relations are obtained:
My = Q + Mj(cos B - ¢ sin B)v' + M1(sin B + @ cos B)w! +\
Mo(sin B + ¢ cos B)v' - Mp(cos B - @ sin B)w!
My = M;(cos B - ¢ sin B) + Mp(sin B + @ cos B) - Qv [ (1)
My = -M;(sin 8 + @ cos B) + Mp(cos B - @ sin B) + Qv
w




10 NACA TN 3905

Now when equations (6), (7), and (8) are substituted into equa-
tions (11), and all the second-order terms are dropped, the following
desired equations for My, My, and M, 1n terms of the displacements

are found:
= E}I-+ TkA2 + EBl(B')%]¢' + TkA?B' - EBEB'(v"cos B + w'sin B) -

Tey v'sin B + Teyw'cos B N - (12)

(EIl c'o'sEB + Elp sin25> w' o+ (E12 - EIl)sin B cos g v" -

My

(TeA + EEBEB'¢') sin B - Tep@ cos B ) (13)

(EIg - EIl)sin B_cos B w' + (EIl'Sin25'¥ EI, COSEB>V

=
N
il

<TeA + EBQB'¢') cos B + Tep@ sin B (1k)

Equilibrium Conditions

The equilibrium of the forces and maments that act on a differential
beam element 1s now considered. In this consilderation the element 1is
formed by slices parallel to the yz-plane, because thls choice leads to
rather simple results. The forces that act on such an element are shown
in figure (6a); the moments, in figure 6(b). The quantities 3., By

pz, qx’ qy’ and qz are resultant force and moment loadings, which

involve both the acceleration body forces and the applied aerodynamic
loading. The acceleration body forces, due to both centrifugal and
transverse accelerations, are derived 1n appendix B.

Summation of the forces in the x-, y-, and z-directions and suma-
tion of-the moments about the x-, y-, and z-axes lead to the following
equlllbrium conditions for shear and moment:

T + px =0

Vy' + -ﬁy =0 (15)

V,' + 5, =0
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M ! - Vow! + Vvt + g = O (162)
X y Z Ax

My' - Tw' + V, + Gy = 0 (16b)
M;!* - Tv! +Vy+§_z=0 (16C)

By substitutlon the shears in these equations may be eliminated to give
the following basic equilibrium conditions:

- A

M.t - My'v' + My'wt - qu‘ + QW' + 3 =0

v

0 (17)

MUV" - (TW')' + Qy' = f)z

MZ" _(Tv.l)l+-q.-zl _ﬁy,___o 3

Substitution of equations (12), (13), and (14) into equations (17) gives

1

2 4 EBl(B')2]¢' + 'Ikazﬁ‘ - EB,B'(v"cos B + w'sin B) +

- [GJ + TkA

Tepv'sin B - '.T.‘eAw"cos B+ 'q'yv' - @uw' -G, =0 (18)

[(EIl cos®p + EI, sin“B)w" + (EIp - EIj)sin B cos B v" -

(‘I‘eA + EB2B'¢') sin B - Tep@ cos [{I - (Tw')r + ay' -5, =0 (19)

l:(EIz - EIl) sin B cos B W' + (EI]_ sin®g + Elp coseﬁ> v -

(TeA + E52B'¢'>cos B + Tep@ sin [3]" - (Tv')' + @' - f;y =0 (20)

vhere second-order terms have been dropped. Only the loadings now remain
v0 be considered.
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Resultant Loadings -

As mentioned-previously, the resultant or total loadings are com-
posed of bath the inertla loading due tocentrifugel and vibratory accel-
erations and the applied aerodynamic loading. The inertila loadings,
which consist of the forces and moments which oppose accelerations of the
blade elemerits, are derived in appendix B wheregs the aerodynamic
loadings Iy, Ly, and M are left in this symbolic form, since they are

in the nature of externally applied loadings.

The procedure that—follows is employed in the derivation of the
total loadings which i1s glven in appendix B. The acceleration of any
mass particle on the vibrating, rotating blade 1s derived and the com-
ponents in the x-, y-, and z-directions are obtained. These component
accelerations include terms for the Corialis force and transverse and
centrifugal accelerations along with higher order terms. The inertia
force and moment loadings are then obtalned by lntegrating over the cross
sectlon; these are simplified by dropping second-order terms and are then
added with the serodynamic or spplied loadings to yield the following
desired resultant loadings 3, ﬁy, Dy ks qyi and Qy:

ﬁx N T Qamx ~N
Py = Ly - m[? - Qz(v + eoi] + me[? sin B + 0°(cos E - ¢ sin Bi]
- m(¥W + ea cos B)

iz =1,

M - sze[kv + eo)sin B + e P cos é} + me(V sin B - ¥ cos B) - & (21)

5?!

sz(kng - kmla) (sin B cos B + @ cos 2B) - mkAza

ay = ~0Pmex(sin B + @ cos B)

3, = ~0%mex(cos B - @ sin B)

Final Differentiasl Equations

The substltution of equations (21) into equations (18), (19), and (20)
gives now the desired f£inal differentlel equations of equilibrium
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- {[GJ + Tkp® + EBl(B')2]¢' - EB,B'(v"cos B + w'sin ;3)} -

Tep(v'sin B - w'cos B) + 0°mxe(-v'sin B + w'cos B) + QPme sin Bv +

Q'Em[(kuﬁa - kmla)cC>S 2p + eeqy cos B]¢ + 2F - me(V sin B - % cos B) =

M + (ka;a')' - 9°m [(kmee - kmla)sin B cos B + ee, sin B:l (22)

[(EIJ_ coseﬁ + ElIp sineﬁ)w" + (E12 - EIl) sin B cos B v' - Tepd cos B -

EBoB'@'sin [3]" - (Tw')' - (Q2mxed cos B)' + m(¥W + e'd cos B) =

L, + (Tey sin B)" + (Q2mxe sin B)’ (23)

[(EIE-EIl)sin B cos B w'+ (EIl sin2[3+E12 coseﬁ>v"+ Tep@ sin B -

EB2B'¢! cos [il"- (Tv?) '+ (92mxed sin B)* + 0°med sin |3+m(i?-e" sin B) - Q%mv =

Ly + (TeA cos B)" + (sz.xe cos B)' + sz(eo+e cos B) ' (2k)

In these equations, the terms that are not included in previous
theories have been underlined. (It should be noted that ref. 18 suggests

the existence of the centrifugsl coupling terms O2mxew' and (02mxeg )
for the case of a blade with B = 0.) Many of these new terms are
coupling-type terms which are associated with the centrifugal forces. A
number of the new terms take the forms of lateral and twisting loadings
which tend to deflect the blade even in the absence of externally applied
loads; because of this fact they have been written on the right-hand
sides along with the epplied loads Ly, L, and M.

Importance of coupling forms.- It is beyond the scope of this paper
to make a complete evalustion of the magnitude of each of the coupling
terms and thelir influence on such phenomens &as, say, blade vibration. A
rough idea of their importance can be gathered by analyzing each term in
detail and comparing them to other terms of known importance. As an
example, consider (TeA¢ cos B)" in equation (23). If, for simplicity
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in the consideration, ey and m are considered independent of x, and
if .B = O, then this term would become oii eXparision—

-szeA¢ + 2T'(eA¢)' + T eA¢)"

These terms may now be compared with other terms of known importance.
Thus, if ep® is interpreted as a deflection, then the last two terms
of this expansion are seen to be exactly comparsble to the expansion of.
the well-known and important term (Tw!')' = T'w' + Tw'. Also the first

term -szgA¢ 1s directly comparable with the coupling term of estab-
lished importance in the consideration of coupled bending-torsion of-

vibrating beams, namely, « me@. A similar consideration may be given
each of the other new terms in the final equations. The examples to be
presented later will also glve an indication of the importance of some
of the terms.

Boundary conditions.- Since the problem is, of course, a boundery-
value problem, some mention of the assoclated boundary conditions should
be made. The most general case Involves ten boundary conditions - two
conditions associated with equation (22), and four each.for equations (23)
and (24). These conditions all evolve from the type of constraint-that
is lmposed on the ends of the beam on the displacements v, w, and
the moments My end M, (egs. (13) and (14)), the torque Q (eq. (8 5,
and the shears Vy and V, which are defined by equations (16b) end (16c)
For a completely fixed end, the boundary conditions would be

v=w=¢=v'=w'=0
For a free end, the condltions would be

Q:My=Mz=Vy=vZ=O
In this case, the alternate choice of M; =Mp =0 (see egs. (6) and (7)
mey be used instead of My =M, = 0.

For the presentsystem, an end cannot be-referred toc simply as pin-
ended; care must be taken to specilfy the muber and directions of pins
present. For example, an end may have & pin which runs parallel to the
y-axls but may be fixed as regards displacements v and ¢. In this
example, the moment My has been relaxed and the boundary condltions

become

V‘=W=V'=¢=My=0

Other pin-ended conditions follow in a similar fashion.
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Elastlcally restrained ends mey be handled

in a
that used in the usual treatment of beams, except tha t
the restraint must be properly taken into account.

Subcases of the general theory.- In actual epplications, several
speclal subcases of the present theory are frequently encountered. Three
of these subcases are described as follows:

Case I: The bullt-in twist 1s zero, B = O.
Case IT: Bending in two directions without torsion, ¢ = O.
Case IIT: Torsion only, v =w = O,

quations of motion which result when the theory is reduced to these
) T

- [(GJ + TkA2>¢'] - Tepw' + QPmxew! + Q2m (km22— k1> + 533)¢+ mkm2§5'+ mew= M
(25)

(EIlw" - '.T.‘eA¢)" - (Tw')! - (92mxe¢)' + m(¥W + ea) = L, (26)

(B17) " - (B00)' = 6w ¥ = 7y - ()" + (dBce) + oo + <)
(27)

For case II, ¢ = O,
[KEIl cos®p + EIp sineﬁ)w" + (EIQ - EIl)sin B cos B vf]" - (Tw')! + mW =
L, + (Tep sin B)" + (QPmxe sin B)' (28)
[(EIQ- EI1)sin B cos B w"+ (EIl sin2g +EI, COSEB)V'E] mo_ (Tvt)t - 02y mh

Iwuk(TeA cos B)"+—(92mxe cos B>'+-92m(eo+ e cos B) (29)
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For case III, v =w = O,

- {[GJ+TRA2+EB]_(B' )2:l ¢'} '+ 02m [(km22- kmf)cos 28+ eeomcos ;3]¢+ mkm2¢ =

M+ (TkAep') ' 02m l:(kmzz - km_-l_z)sin B cos B+ee, sin B:I (30)

Assoclated Energy Equation

As a check on the derivation presented herein, the dlfferential equa-
tions of equilibrium were derived by a completely different approach that -
involves energy principles. In this energy approach the straln energy of
deformation, in which the- longitudinal strains were arrived at in a dif-
ferent masnner than that—presented herein, and the work performed by all
the forces present were consldered. The equation for totel potential
energy of the system is, of course, closely allied to the differential
equations and is of intrinsic value in the treatment of the problem of
the present paper from an energy standpoint. For completeness, the equa-
tion is presented here without derivation. If U denotes the totel strain
energy and V represents the work performed by the centrifugal body forces
and the applied loading, then _ " -

R L . L
U-V= %ijﬁ {%Il(v"sin B - w'cos B)2 + EIE(V"cos B + w'sin B)2 +
0
[GJ * EB;L(B'>2](¢‘)2 ~ 2EB,(v"cos B + w'sin B)B‘¢‘} dx -
b/\R T {}l;ﬁv')z + (w')?] + e,(v"cos B + w"sin B) -
0 2 A |
11" 1 2 l 1 2 1 t
ep@(v'sin B - w'cos B) - k, [—2-(¢ )=+ B ¢]} +
02m {%el}(v'cos B+ w'sin B) + @(v'sin B - w!'cos B)] + %ve +
2 2

(e cos B + eo - eff sin B)v + !}(kmz -k )éin B cos B -

ee, sln 13]¢ - %—[(km22 - kmlz)cos 2p + eey cos p:l gl o+

PyV + DwW + off | dx - : (31)
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where Dy, Py, and gq are the applied loadings considered in a static

sense. Application of the minimum variationael principles to this expres-
sion yields differential equations which are the same as those given by
equations (22), (23), and (24) when ¢, v, and w are not time dependent.
The variation also gives the boundary conditions on moments, shears, and
torques that are for stipuleted geometrical conditions at the ends of the
beam and are given in the section entltled "Boundary Conditilons". The
differential equations applicable when time dependent motion is considered
mey now be obtalned by writing the loadings Py’ Py and q &as the sum

of the applied loadings and vibratory inertis loads (as obtained by
D'Alembert's principle); specifically,

By

Ly -n¥ - ea sin B) 1

L, - m(¥W + e'd cos B) . (32)

Py A

g=M+me(¥ sin B - W cos B) - mkmza

The substitution of these loadings into the differential equations obtained
by the variatlonal process then glves equations identlcal to equations (22),
(23), and (24).

METHOD OF SOLUTION AND EXAMPLES

The generel differential equations of this pasper cannot be solved
exactly, and it 1s therefore necessary to resort to some epproximete means.
Two means, which differ in manipulations but which yleld equivalent results,
wlll be considered here -~ one is a modified Galerkin type procedure, the
other a Rayleigh-Ritz procedure.

In the modified Galerkin procedure, the displecements are assumed to
be expressed in finite seriles of known functions as follows:

¢ = a,d; + 8Py + » .-.-ap¢P

W

biwy + boWs + o . . bqwq 2 (33)

v

Cl'V'l + C2'V‘2 + e . . CrVr

vhere an, bp, and cp a&are unknown coefflcients, which may be time
dependent, and ¢n: Wn, a@and Vvp are chosen modal functions which satisfy
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the geometrical boundary conditions of the problem. A set of linear
simultaneous equations which sllow the evaluation of the unknown coeffi-
cients 1s now formed through application of the following equations:

E 0 n l) 2, 9 o e e 9] )"-a
n-1l n

R R R y .

Jf winDo(@,w,v)dx + Mywnﬂ + Vzwg] =0 (n=1,2,3 «%.0q)
0 0 0 (3)+b)
R . R ~_9R

h[‘ vnD3(¢,w,v)dx + Mz“nj + Vyvn] =0 (n=1,2,3, ...r1)
o 0 o

(3ke)

where Di(@,w,v), Dy(@,w,v), and Dz(@,w,v) denote, respectively, equa-
tions (22), (23), and (24) with all the right-hand terms transferred to
the left=hand side; Q, My, and M, are given by equatlons (8), (13),

end (14); and V, and Vy ere found from equations (16b) and (16c).

For statlc or other externally lmposed loading conditions, the set of
equations formed by equations (34) will be nonhomogeneous; the solution
for the unknown coeffilclents and, hence;-the displacements then proceeds
by ordinary means. TFor a characteristic-value problem, such as free
vibrations, the set—of equations will be homogeneouis, and the vanishing
determinant will yleld the characterlstic frequencles.

This procedure is called a modlfied Galerkin procedure because of
the presence of the boundary terms in equations (34). In general, it
would be very difficult to choose modal functions in equations (33) so
that both the geometric and "force" (shear, moment, torque) boundary éon-
ditions are satisfied, which 1s necessary in the usual Gaelerkin approach.
Therefore, the force boundery terms are added in equations (34&, and,
thus, the stipulations on the chosen medal functlons are relaxed so that
only the geametric conditions need be satisfied. It should be mentioned
that in actual applications these force boundary conditions do not have
to be evalusted, since they can always be cancelled by integrating certain
of the terms of-the integrals by parts. A Justification of this procedure
can be obtained from the Rayleigh-Ritz procedure. _

In this Rayleigh~Ritz approach the displacements are-expanded in
series as_before (see eqgs. (35)), with the same requilrement on the geo-
metric boundary conditlons. These expansions are substituted into the
energy equation (31), and a minimization is then made with respect to the
unknown coefflcients; that is,
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éﬁg_:_Zl =0 (n=1,2, . ..0D)
dan

%;_v):o (n=1,2,...0% (35

U - v)

acn =0 (n = l’ 2, " e ® I‘)

-

The resulting equations will be identical with those of equations (34).

As a matter of fact, equations (35) may be used to prove the validity of
equations (34) (through appropriate integration by parts) and thus to

show that the two procedures outlined here are really equivalent. Because
of the confusion that often arises about boundary conditions when the
Galerkin process 1s applied, the safest procedure 1s to use the Rayleigh-
Ritz approsach.

Two examples are now given to show the application of the two pro-
cedures discussed and to show further the lmportance of scme of the
coupling terms.

Example 1

In example 1, it is desired to determine the natural frequencies of
a rotating cantilever blade having zero initial twist or blade angle of
attack (B = 0) and with v = O. The Rayleigh-Ritz procedure will be used.
Assume that the displacements ¢ and w are gilven as follows:

¢ = 8@y + ax@s + a3¢3

(36)
W o= blwl + b2w2 + b3w3

where ¢n and wp are the natural uncoupled modes of the nonrotating
beam in torsion and bending, respectlvely, and are expressed in ferms of
a unit tip displacement:. Equations (36) are substituted into equation (31)
with v =B = 0, and a minimization 1s made with respect to ap and by,
and then use is made of equations (32), with the applied loadings

= Ly, = M = 0. The resulting equations are then reduced as follows.

First, the relations which apply to uncoupled vibrations are used, namely
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Jf mw, W, dx = O . . . {(m # n)
0]

]
=
8]
)
i
2

JFR ET wy,'wy" dx = 0 (m # n)
o .

- 02 /B v 2ax (m = n)
0

> (37)
JCR mKA2¢m¢n dx =0 _ (m # n)
= Ny (m = n)
JQR I, ' dx =0 | - (m # n)
= f mic, g, # (m = n) -
= HnENn )

>,

where p 8&nd pp are the nstural circular frequencles of the uncoupled

bending and torslon modes, respectively. Second, the constant terms are
dropped, since they apply to static deformation of the blade. And third,
motion representative of simple harmonic motion is considered by setting

an 8in wt

8n
by, = En sin wt

The final equations will be homogeneous, and the vanishing of the deter-
minant of the &, and by coefficilents will define the natural coupled

rotating frequencies. This determinant -is -
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[ (P eP Py,
A2
A3
-B17-0PC; 409Dy
~Bap-efCoy+0%Dsy

Ara

. _(%2-0’2) Marhgn

A2z
81060y 4071
Bop TopztDan
~Bsa-oPC3z+PD5p

Az B33 6RCy140%Dy;

A2z “BypaPCypt0D
(m2o?)usiazs B3P0 5+0%0; 3
B3 CyzH®ys (s 2f) 4By 0%y
BozoCptiyy | B
B33-a"C33+0°D35 Byp#a¥y3

where the coefflcients are

R
My, =f e, 2dx
0

R
N, = fo mic, 2§, Zax

Amnn

B

R
=f Ty 'y ! @
0

R

= f Te A¢mwn" dx
0
R

= f me@w, dx
0

R
= f mxe¢mwn' dx
0
R

= j; Tk, 2, ¢ dx

- [ nfi® - n® et ax

" Bar-ufCa1#0PDay

-Bop-2PCoatd®Dap
~Bo3-aPloxyHiPss
5’:2"42'.1.2

(L S

Ep5+iPFgs

</

21

-B31-a2C5+0%03 |

“B2-ePC30PD3p

-B33-0"C33+0°D33
Ey5e0Pry5
Ep3+0°Fos

(us2aP)semy iy 53

(38)

No numerical evaluation of this exsmple is mede, but the importance
of some of the new coupling terms of the present theory is realized by
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comparing the associsted coupllng terms which appear in the determinant.
For example,’ Qngl, which is new, may be compared with wECll, a con-’
ventional term of established importance. The frequencles Q2 and w2
may be of the same order of magnitude; the factors under the integral
are the same except for w; and xwy'. These may be shown to be of the
same order of magnitude, however, and so both coupling terms are com-
parable in magnitude., This is another indication, therefore, that the
new couplling terms are of significance in the treatment of rotating
'blades. - o - . I _ ’

Example 2 : - _

The casé treated for example 2 is a uniform blade with an offset —
nmass at the tilp and with B, v, ep, and eg equal O. (See top sketch
in fig. T7.) This system may be regarded as having & behavior similar to
an actual helicopter blede which is heavily lcaded along the leading
edges, as depicted in the lower sketch of flgure 7. An approximetion to
the first—two natural frequencles will be found by the modified Galerkin
procedure. The differential equations for shear, moment, torque, and ten-
sion (egs. (25), (26), (16), (13), and (8) with B =v =gy = ey = 0)
appliceble here are _ _ . -

~N

-[(GJ + ka)gé*] " Pmxewt + 22m (k2 - Ky ?)f - o (mew + 26} = o :

r (39)
(EIlw")" - (Dw')' - (Qemxe¢)' - 0?(mw + me@) = O
My = EIlW"
Vy = -(EIlw")' +Tw' + Q°mex@
[ (40)

Q = (GJ + TkA2)¢'

T=fRQ2mxdx+92M'R

x J

In these equetions the mass per unit length m should be interpreted to

epply to both the distributed mass of the beam and to the concentrated J—
offset mass. Thils concentrated mass can be handled, for example, by

imagining the mass to be distributed over an infinitesimal length, say A,
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with intensity M/?\, then to perform the integrations of the Galkerin
process as though all.quantities involved in the integrations are uniform
in this interval, and finally to squeeze the interval down to zero length.
An equivalent procedure 1s to take the concentrated mass into sccount
through means of the Dirac delta function.

With this in mind, equations (39) and (40) are substituted into
- equations (34%a) and (34b); the terms ¢n(GJ + TkA2)¢' and

W E—(‘I‘w')' - (Qamxe¢)'] are integrated once by parts, the term w, (EIlw") "

is integrated twice by parts, the boundary terms cancel, and the results
are the following two equations:

/OR (GJ+TkA2)¢'¢n' d.x+fR

[ﬂzmxew' +Q%m (kmzz-km12> ¢-cn‘2 (mew+mkm2¢):] @, dx=0

0

(k1)

R R R

./0 EL;w'wy" dx +/0 (Tw' + Qamxeg)wn’ dx - wzﬁ (mw + me@)wy, dx = O

(42)

Approximations to. the displacements are now chosen as
— (43)

w o= blwl

where ¢l and wy are the fundamental uncoupled vibration modes of the

beam without the tip mass, in torsion and bending, respectively, and each
i1s given in terms of a unit tip displacement; these functions satisfy the
equations

R R
/; GJ(¢1')2<3:: = ulafo mkm2¢12dx = ;J.lzm_kme 22‘_ (“12 -Z VG >

-

ke PR2

s 16/22)
-

L (k)
R

Jo

It

R
2, _ .2 2 2 mR 2
EI{ (Wl") dx = W, fo mwy “4x = ay T @y
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where m refers only to the mass per unit length of the beam.
tions (43) are now substituted into equations (41) and (%2), use is made

NACA TN 3905

Equa-

of equations (44) and the eguation for tension (applicable here)

cognlzance being given the offset tip mass; the values found for the
integrals are as follows: . - .

R

Jo

b}

3, o3, ©3 o o3 o

/

aI¢, Pax

b i, ® B

Qamxew1'¢l dx = 1.3802Me.
2 (km22

mew, @y dx

mlcy 2 2ax

EIl(wl">2clx = wl21_%3

dx~92 l)';(mR +£M)

(') 3

2 _ mR
mwldx—T+M

- kmle) ¢1é ix = 922

. (45)

J

(The contribution of TkA2 is found heglible in the first integral.)
The flnal equations are given now in nondimensional form

[“1 me® | @

2MB. CL)]_2

wy w1

e L o
Q‘é(zmae“ * l):l o1 * <1'38 5"
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22 _o?\g , =R, 02 (&, kR _ o2 mR\|b1 _
1'38“)12 cn12 81 + 4M+wl2(3+15M) cnlz(l-l.llM)a ¢}

The vanishing of the determinant of these equations will yield the
natural frequencies. Specific evaluation has been made for the fol-
lowing values:

mB

M =5
R _
E-ll-
e _
- fo.02
2
%:o.mzﬂg—a—
wy. ey

and the results are shown in flgure 7. Results are shown for three con-
ditions: (a) for vibration of the beam with offset mass in pure bending
or pure torsion, (b) for vibration in the conventional coupled sense but
with no centrifugal-force coupling (that is, the underlined terms of the
equatlons of this example are cmitted), and (c) for vibration with all
coupling terms considered (the curves lsbeled complete in fig. 7). It
mey be seen that the inclusion of centrifugel-force coupling, which is
new in this paper, has a very pronounced influence on the vibration
characteristics. In fact, this centrifugal-force coupling seems to be
of the same genersel strength as the conventional offset mass coupling
normally considered.

CONCLUDING REMARKS

The differential equetions of deformation of a twisted rotating
blede under arbitrary loading have been derived. A special feature of
the analysis 1s the consideration of the noncolncidence of the tension,
mass, and elastic axes, whereby coupling is allowed to occur in a more
general form than heretofore considered. This theory can theréfore be
used to solve problems 1n which these effects are significant and to
evaluate the less complete theories which perhaps are more easlly applied.

The aerodynemic loading considered was left in general form. It
can be repleced, however, by whatever terms are appropriate for the case
being treated. If these serodynsmic forces are taken as zero, then the
loadings for free vibration result.
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Because of 1ts usefulness, the energy equation for blade deformation
is also presented. Two methods of solutioun gre dlscussed: one is a modi-
fled Galerkin process which makes use of the differential equations; the
other 1s a Rayleigh-Ritz procedure which makes use of the energy expres-
sion. Two examples are presented which i1llustrate the application of

both of these procedures.

A discussion of the Ilmportance of the néw coupling terms that arise
is made and thelr significance 1s further brought ocut by the examples.
The indicatlions are that the centrifugsl-force coupling may be a&s impor-
tant—as the mass coupling that 1s normally considered in beam enalysis
and therefore should be included as a regular part in the treatment—of-

rotating blades. .

Langley Aéronautical Leboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., October 5, 1956.
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APPENDIX A
DERIVATION OF LONGITUDINAL STRATINS

In this appendix the equation is derived for the longitudinal strain
that is developed when a twisted beam undergoes both lateral and twisting
deformations. Consider an imaginary plene to cut through the beam per-
pendicular to the elastic axis; the location of a fiber £ of the cross
section, both before and after the deformation, may then be given according
to the following sketches:

Z . Yl—hl

&
aj}e . T
[ y-—ﬂ 9%922//// ~ ¢
TNT . 1
A\ z 1

e | v
NG
N\- Elastic axis

The x-axXis is normel to the paper and l1s made coincident with the unde-
formed position of the elastic axis. In terms of the distance 1 along
the major axis, the distance ¢ perpendicular to this axis, and the
built-in twist B, the initial y- and z-positions of the fiber and the
rate of change of these positions with respect to the x =are

y=mncos B -t sin B
(A1)
z =18in B + { cos B
y' = -nB'sin B - EP'cos B = -B'z
(A2)

A

nB'cos B - {B'sin B = B'Y

Now consider beam displacements to occur so that the polnt of intersec-~
tion of the elastic axls and the cutting plane moves the distances u,

v, and w in the directions of x, ¥y, and 2z, respectively, and so that
the cutting plene remains perpendlculer to the elastic axis and rotates
eround it by an angle ¢. Then if the usual small-angle assumptions

that cos(P + @) =cos B - @ sin B and sin(p + @) = sin B + @ cos B

are made, the new positlion of the fiber is defined by the following
equations: '



8 _ | . - NACA TN 3905

X =X+ u- v'(yl - v) - w'(zl - w) =X+ d-V'y-vwaz

v+y-2¢} (A3)

yp = v + n{cos B - $ sin B) - t(sin B + ¢ cos B)

2] w + n(sin B + ¢ cos B) + Q(cos g - ¢ sin B) W+ 2 +-y¢

and the derivatives of xj, yj, and zj with respect to x are given

as follows:
ac . ca N 2 s w
xyt=1l+u' = vy +viBlz-wz-w'Bly=1+u' =y(vi +8'w') - z(w' = B'V')

vy == Bla - Blyp-aft = v - yBIg - 2(8+ §1) > (ak)

zy'=w'+B'y-plag+ y@Pt =w' +y(B' + ') - 2p'¢ ]

The lomgitudinal straln that 1s developed 1in a fiber may be found
from these equations by considering the amount an &lemental fiber of
length ds changes in length as a result of deformation. In terms of
the differential components of length in the x~-, y-, and z-directions,
the final length ds; of a fiber is given by the following equation:

dsl2 = dX12 + dy12 + d.Z:|_2 (AS)

Thus

ds1\2 _ /o n\2 N2 L (g 12
(dx ) =(x)"+ ()" + (=) (a6)
which becomes with the use of equations (Ah)

a 2 . . -
(%) =1+ 2E1' - Y(V" + B'w') -~ Z(W" - Blvl):|+___22‘3,-2 _

22B' (v' - yB'$ - zg') + yoB'2 + 2yB'(w' + yP' - 28'@) (A7)
or

T LR R e R | R
(48)
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Now the analogous equation for the original length ds msy be determined
directly from equation (A8) by letting u=v =w =@ = 0. Thus

gs - [1+ (42 + 22)(s1)2] " (A9)
The tensile strain in the fiber can now be written
c - dsl - ds
R Sl
=E:L.. 1
ds
(T Ar =] 1/2
={_l+tl+(y2+22(B)Ju' -y -z + (32 4 22)p JJ -1
= [l - (y21+ ZQ)B';!}I' - yv" - zv' o+ (y2 + zE)B'gzﬂ (A10)

Now with (32 + 22 )(p?')2<< 1 (say less than 0.03 to 0.0k, which is
generally the case), then

€ =u' - yv' - zw' + (y2 + za)B'¢' (A11)

Use is now made of equations (Al) in order to express the strain in
terms of the cross-sectional coordinates n and { as follows:

€ =u' - n(vcos B + w'sin B) - ¢(-v'sin B + w'cos B) + (n2 + §2)5'¢'
(A12)
It 1s convenlent now to eliminate the strain component u'; this
1s done by meking use of the equilibrium condition that the integral of
the longitudinal stress over the cross section must be equal to the total

tension. Thus, with the assumption that the cross section 1s symmetrical
about the major principle axis, the following equation applies:

ﬁnzeLij € dt dn

1 t/2
JF le\/ﬂ Eﬂ - n(v"cos B + w'sin B) - {(~v"sin B + w'cos B) +
Mre Y-t/2

T

(n2 + §2)5'¢']dc dn (A13)
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or

T = E[}u' - Aey(v'"cos B + w'sin B) + AkAEB'¢i] (A1k)

This equetion yields =

ut = %% + ep(v'cos B + w'sin B) + kAZB'¢' (A15)

If T/EA is denoted by the tensile strein ep, then equation (Al5) com-
bined with equation (Al2) ylelds

€ = ep + (eA - n)(v"cos B + w'sin B) + t(v'"sin B - w'cos B) +

(n2 +t2 - kf)a'sé' | (A16)

which 1s the complete expression for the strain ofany fiber in the
cross section.

Expression for Strain in Terms of Dlsplacements in
and Normal to the Blade Chord

Because of spparent anomalles that have arisen in the past; it is
of interest—to show the development of the strain in terms of displace-
ments in and normal to the blade chord. These displacements have been
used by some investigators and are shown in relation to the displacements
of thils paper in the followlng sketch: _

These displecements are related according to the equations

<
I}

vicos B -wp 8in B

(ALT)

£
il

vy 8in B + wp cos B
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If two derivatives of these equations are taken, and due care is given
the fact that B may vary with x, then the following combination of
these derivatives may be found:

v'cos B+ W'sin B = vi" - 28%wi! - B'wp - (B")%v
5 (A18)
~v'sin B + w'cos B = wi" + 2B'vy' + B'vy - (B')Twy

If these expresslions are now substituted in equation (A16), then the equa-
tion for strain becomes

gEvl" + 2Bty + Bvy - (B')2le = (r@ + 2 - kA2)5'¢' (A19)

The interesting fact to be noted here with respect to vy and w; 1is
that the strain is not proportional only to the derivatives v{" and wy",

as might first be supposed, but rather to additional terms which involve
the rate of change of initial twist.

This observation has some significance. If the analysis of this
peper had been carried through in terms of displacements v; and wq,
then the moments and all the results would be in terms of the group of
terms appearing on the right-hand side of equations (Al8), and the final
result would be in agreement with the results presented in reference 1l.
This consideration indicates that the treatment in reference 1 may be
subject to correction, since the assumption is made in this reference
that the moments are proportional to vi" eand wy". Evidently this

assumption is not valid when the beam has a finite rate of change of
initial twist.

Strain When ¢ Is Not Small

The preceding derivatlon was made on the assumption that the dis-
placements u, v, w, and ¢ were small, and & linear equstion for
strain results. An interesting observetion may be made, however, for
the case of v = w = 0, but with large displacements in ¢, such that
nonlinear effects are present. Thus, if the derivation is repeated with
¢ considered large, and with v = w = O, then equation (A1l) would take

the form
=u' + (2+ z )[B gr + l(¢')2]

oo () g+ Mo

Mm
|

I

(A20)
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The strain component ' u' 1s now handled as before; and the equation for
strain becomes ' v ' = -

€ = ep +=(ﬂ2 + Cz - kAa)[é'¢' + %(¢;)%] . (AEl?.

This equation may be used to demonstrate the fact polnted out in
reference 19 that pretwisted blades may possess a torsional instability.
Thus if use is made of equation (5), and the stress is based on equa~
tion (A21), then the following equation for internal elastic resisting
torque results:

O
|

= WP + Tkp2(B' + @) *FEBlEMé' + %(¢')2](B’ + @)

I+ TepS(B' 4 1) + Ezl[(ﬁ s g1y - (B')E(B_' + ¢')] (h22)

Observations similar tc those made in reference 19 may be made about

equation (A22) with respect to the possibility of torsional instability;

as a matter of fact, 1f the net tension over the cross section is zero, -
the equation becomes similar to equation (2 ) presented and discussed in

reference 19. ' ’
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APPENDIX B

CERTVATION OF ACCELERATIONS AND INERTIA LOADINGS

The purpose of this agppendix is to derive the acceleration of a
mass particle of the twisted rotating blade and to derive the inertisa
loadings from this acceleration. In order to do this it is convenient
to introduce the fixed X,Y,Z coordinate axes system shown in the fol-
lowing sketch:

This sketch also shows the rotating x,y,z axes system (used in the body
of the report and in appendix A) and the deformed positions xj, ¥yi, and

z1 of the mass particle (see egs. (A3)). The azimuth position of the
rotatling system relative to the fixed-axes system is denoted by Qt.

In terms of the unit vectors 1, J, and k, the vector T may be
wvritten

T = (xl cos Qt - yp sin Qt)i + (xl sin Qt + yo, cos Qt)J + z1k (B1)

Differentiating with respect to time gives the velocity vector of the
mass particle

¥ = (il cos Qt - Qx; sin Qt - &2 sin Qt - Qy, cos Qt)i +

(il sin Qt + Qx; cos Qt + y, cos Qt - Qyp sin Qt)J + élk (B2)
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and differentiating once again gives the acceleration

i-: = Kic'l - Qire) cos Ot - Q(}'c]_ - Qyz)sin Qt - ('3;2 + Qxl) sin Qt -

Q(Srg +- Qxl> cos Qt]i + [(Bc'l - Q$r2) sin Qt—+ Q(}'cl - an)cos Qt +

(3}2 + QX-}cos Qt—= 9(5’2 + Qxl) sin Q{]J + :’flk_ (B3)

The components ay, ay, and a, of the acceleration vector in the

X-, y-, and z-directions may be found from this equation by letting
t = 0, thus :

1

(*1 - 0Px; - 29?2)1 * (?2 - 9%y, +“éﬂil)j + fk

axi + B-y,j + agk (BLI‘)

Use is now made of equations (A3) and the fact that y, = y; + eq.

Thus, . _
X] =X+ u-Vv'y-w'z
Yo=Vv+y-z20+ e

2. =W+ 2z + Y

The first two derivatives with respect to time are given as follows:

o = ¥ - z¢ (B5)

R
i

Ne
l_l

I
<.
+
=Y
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¥ =U - ¥y =iz
ya =% - zf (B6)
'z°l=;«:+y§.b: J

Substitution of these equations into equation (B4) yields the desired
acceleration vector, with the following components in the x-, y-, and
z-directions:

N

Wy -W'z - 02(x + u - v'y - w'z) - 20(V - z§)

I
=N

ax

- za -P(v+y -zf + eo) + 200 -~ v'y - w'z) > (BT)

]
<

ay—

az=.‘i;+y'a

By substitution of the expressions (Al) for y and 2z, the accelerations
of the particle are obtained as follows Iin terms of the coordinates of the
cross-section ¢ and 7:

ay = U - 09(x + u) - 2av + nIEV' cos B - W' sin B + )
02(v' cos B + w' sin B) + 20@ sin é] + g[%' sin B -
W' cos B+ @2(~-v' sin B + w' cos B) + 29@ cos é]
ay =V - 02(v + eg) + 200 + n[}a sin B - 02(cos B - @ sin B) +$ (88)

2Q(-v' cos B - w' sin Bi] + g[}a cos B -

P(-sin 8 - @ cos B) + 2a(v' sin B - W' cos Bﬂ

az =W + na cos B - ga sin B
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The inertie loadings on the beam may now be derived from these
acceleration equatlons by appropriate integrations over the cross section.
The total or resultant loadings desired in the analysis given in the body
of this paper are the sum of the inertia loadings and the applied loadings,
and are given by the following equations, when the assumption is made that
the cross section is symmetrical gbout the major principal axis:

Ne t/2 B : s . )
Py = b/; U/: axp 4df dy _ _
Ne At/2
Py = Ly - J[‘ °/\t/2 ayp 4f dn
e At/
Py = LZ —jnte \—/’:-t/a ay,0 dg d.T]
> (B9)

Te ~t/2
T = M -‘/;te u/:t/z EaW(Zl—=uW) +eg(yL - V)| o At an

ay=f Zeft/e [-ex(z1 - ¥)] o &t an

t/2

Te ~t/2
% " :/;te u/:t/e bexto - IER

where p 1s the density of the structural material and may be a function
of ¢ and 1. If the integrations are performed with the use of equa-
tions (B8), the following loadings are found: :
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- a2 Sy s O

Py = = LII_J.— “(x + u) - 2\’2{'1 - me)-V'cos B - wisin B +

02(v'cos B + w'sin B) + 2ng5 sin ﬁzl (B1O)

Py =Ly - mEF - Q3(v + eg) + 2911] - me E¢ sin B —_Qa(cos B -

@ sin p) + 2(-V'cos B - w'sin B)] (B11)

=L

2

- m(¥) - me@ cos B (B12)

ldl

[\

x =M - 0%me [(v' + eg)sin B + egff cos B:l + me(V sin B -
W cos B + 20U sin B) - Q%n[:(k.ﬂge - kmlz)sin B cos B +

(02® - 41 cos 28] - Puic,2 - 2emk? - Ky )iicos B sin p -

2(11n(km223in2;3 + kmlzcosaﬁ)ﬂr' (B13)

Iy = -QPme [(x + u)sin B + xf cos ﬁz‘ + me(U sin B -
20v sin B) + 9°m [(kmae - kmlE)v‘sin B cos B + (km2231n2[3 +
kmlacosze)wﬂ - m(km22 - kmla)'x}'sin B cos B +

m(knp®sin®g + k1 2cos?p) (206 - W') (BLk)



38 ' NACA TN 3905

Ty = -0me K; +_u)coé B - x@ sin é] + me(d cos B - 20V cos B) +
0%m [(kmzz - k.m12>w'sin B cos B + (km22c032;3 + ";;m1231n2,3)vn] -
m(km22 - kmlE)G'sin B cos B 'InQﬁmgacoszﬂ . kﬁizsinaa)V' .
EQm(kmz2 - kmle)é sin B cos B o : : (B15)

Equations (B10) to (B1l5) give the general expressions for the
loadings and contaln many terms of second order whi¢h for most englneering
purposes can be neglected. 1In equation (B1Q), for exsmple, all other
terms are small in comparison to mﬂex, which 1s the conventlonal expres-
sion for P, ~(note that p, = -T'; for most practical purposes these
small terms may therefore be neglected. For any specific gpplication,’
however, particularly in the case of unusual configurations, the relative
magnitude and importance of the terms should be determined. In the case
of conventional helicopter or propeller blades, it _is belleved that the
following first-order reductions of equations (BlO) to (B15) are suitable
for most englneering applications

-

Py = -T' = maex

5, =L, -_m(% + eff cos a)
T = M - @Pme[(v + eo)sin B +-eqf cos ;3] +- > (816)
me(V sin g ~ ¥ cos B) - Qam(kmge - kml2)(sin B cos B +
§ cos 28) - mk;2P

T, = -0°mex(sin B + @ cos B)

q, = -0Pmex(cos B - @ sin B) B

2 ok 2+ k2
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(a) Nonrotating beams.

(b) Rotating beams.

Figure l.~ Cases treated in previous theory.
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Tension axis

Elastic axis
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Figure 2.- Present theory. Case of coupled bending-torsion of twilisted

rotating beam.
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Figure 5.~ Namenclature.
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Figure 5.~ Internal elastlc moments.
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(a) Porces. (b) Moments.

Figure 6.~ Equilibrium of forces and moments.
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Figure T.- Natural frequencies of exsmple 2 showlng the Importance of
centrifugal~foree coupling.
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